Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Microorganisms ; 11(8)2023 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-37630629

RESUMO

Pseudomonas aeruginosa is a high-priority bacterial agent that causes healthcare-acquired infections (HAIs), which often leads to serious infections and poor prognosis in vulnerable patients. Its increasing resistance to antimicrobials, associated with SPM production, is a case of public health concern. Therefore, this study aims to determine the antimicrobial resistance, virulence, and genotyping features of P. aeruginosa strains producing SPM-1 in the Northern region of Brazil. To determine the presence of virulence and resistance genes, the PCR technique was used. For the susceptibility profile of antimicrobials, the Kirby-Bauer disk diffusion method was performed on Mueller-Hinton agar. The MLST technique was used to define the ST of the isolates. The exoS+/exoU- virulotype was standard for all strains, with the aprA, lasA, toxA, exoS, exoT, and exoY genes as the most prevalent. All the isolates showed an MDR or XDR profile against the six classes of antimicrobials tested. HRC ST277 played a major role in spreading the SPM-1-producing P. aeruginosa strains.

2.
One Health ; 17: 100591, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37388190

RESUMO

Serratia marcescens is a Gram-negative bacterium presenting intrinsic resistance to polymyxins that has emerged as an important human pathogen. Although previous studies reported the occurrence of multidrug-resistance (MDR) S. marcescens isolates in the nosocomial settings, herein, we described isolates of this extensively drug-resistant (XDR) species recovered from stool samples of food-producing animals in the Brazilian Amazon region. Three carbapenem-resistant S. marcescens strains were recovered from stool samples of poultry and cattle. Genetic similarity analysis showed that these strains belonged to the same clone. Whole-genome sequencing of a representative strain (SMA412) revealed a resistome composed of genes encoding resistance to ß-lactams [blaKPC-2, blaSRT-2], aminoglycosides [aac(6')-Ib3, aac(6')-Ic, aph(3')-VIa], quinolones [aac(6')-Ib-cr], sulfonamides [sul2], and tetracyclines [tet(41)]. In addition, the analysis of the virulome demonstrated the presence of important genes involved in the pathogenicity of this species (lipBCD, pigP, flhC, flhD, phlA, shlA, and shlB). Our data demonstrate that food-animal production can act as reservoirs for MDR and virulent strains of S. marcescens.

3.
J Glob Antimicrob Resist ; 33: 279-282, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37088246

RESUMO

OBJECTIVES: The horizontal transfer of antibiotic resistance genes in Gram-negative bacteria, mainly through plasmids, is one of the greatest concerns for health systems worldwide and has been a growing threat in hospitals related to healthcare-associated infections by multidrug-resistant bacteria. Here we present p henotypic and genomic characterization of a KPC-2 and MCR-1.27-producing Klebsiella pneumoniae strain isolated from a paediatric patient at an oncologic hospital in Belém, Pará State, Brazilian Amazon region. METHODS: Antibiotic susceptibility test, whole genome sequencing, and in silico analysis were used to characterize the bacterial isolate (IEC48020) received in the Evandro Chagas Institute. RESULTS: The isolate was resistant to carbapenems, colistin, polymyxin B, and several other antimicrobials and was susceptible in vitro just to tigecycline, classified as an extensively drug-resistant phenotype. Genomic analysis revealed IEC48020 strain belonged to sequence type 11, clonal complex 258 high-risk clone and the presence of eight plasmids, two of them harbouring mcr-1.27 and blaKPC-2 genes, and the presence of virulence-related genes encoding yersiniabactin, phospholipase D, and traT genes. CONCLUSIONS: The presence and dissemination of high-risk clone bacteria with high disseminating plasmids containing antibiotic resistance genes for last resource antibiotics treatment options is a threat to the healthcare system and demands efforts in surveillance and epidemiological research for better knowledge of the actual situation of antibiotic resistance in the healthcare system, especially in the Amazon region, Brazil.


Assuntos
Infecções por Klebsiella , Klebsiella pneumoniae , Humanos , Klebsiella pneumoniae/genética , Brasil , Proteínas de Bactérias/genética , beta-Lactamases/genética , Infecções por Klebsiella/microbiologia , Antibacterianos/farmacologia , Genômica , Hospitais
4.
Antibiotics (Basel) ; 10(12)2021 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-34943739

RESUMO

Carbapenem resistance among Klebsiella pneumoniae isolates is often related to carbapenemase genes, located in genetic transmissible elements, particularly the blaKPC gene, which variants are spread in several countries. Recently, reports of K. pneumoniae isolates harboring the blaNDM gene have increased dramatically along with the dissemination of epidemic high-risk clones (HRCs). In the present study, we report the multiclonal spread of New Delhi metallo-beta-lactamase (NDM)-producing K. pneumoniae in different healthcare institutions in the state of Pará, Northern Brazil. A total of 23 NDM-producing isolates were tested regarding antimicrobial susceptibility testing features, screening of carbapenemase genes, and genotyping by multilocus sequencing typing (MLST). All K. pneumoniae isolates were determined as multidrug-resistant (MDR), being mainly resistant to carbapenems, cephalosporins, and fluoroquinolones. The blaNDM-7 (60.9%-14/23) and blaNDM-1 (34.8%-8/23) variants were detected. MLST genotyping revealed the predomination of HRCs, including ST11/CC258, ST340/CC258, ST15/CC15, ST392/CC147, among others. To conclude, the present study reveals the contribution of HRCs and non-HRCs in the spread of NDM-1 and NDM-7-producing K. pneumoniae isolates in Northern (Amazon region) Brazil, along with the first detection of NDM-7 variant in Latin America and Brazil, highlighting the need for surveillance and control of strains that may negatively impact healthcare and antimicrobial resistance.

5.
Genome Announc ; 5(13)2017 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-28360159

RESUMO

We report here the draft genome sequence of Corynebacterium pseudotuberculosis PA06, isolated from a subauricular abscess in an ovine host. C. pseudotuberculosis is a worldwide pathogen of small and large ruminants. The genome comprises 2,320,074 bp, with a G+C content of 52.2%, 2,195 coding sequences, 48 tRNAs, and three rRNAs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA